Cat Scratch Disease Scapular Osteomyelitis: A Case Report

Patrick J Reardon, MD1*
William B Gilbert, MD1
John E Kuhn, MD1

1Vanderbilt University Medical Center, Nashville, TN, USA

*Corresponding Author: Patrick J. Reardon, MD, 1211 Medical Center Drive, Nashville, TN 37232, USA
(615) 322-5000; e-mail: pat.reardon@vumc.org

Institutional review board approval was not required for this case report.

Disclaimers:
Funding: No funding was disclosed by the authors.
Conflicts of interest: The authors, their immediate families, and any research foundation with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.
Patient consent: Obtained

Run head: Cat Scratch Disease Scapular Osteomyelitis
Bartonella henselae is the bacteria known to cause Cat Scratch Disease (CSD). Symptoms typically include low grade fever and painful lymphadenopathy. Rarely, cases of osteomyelitis have been reported from B. henselae, however to our knowledge no cases of scapular osteomyelitis have ever been reported in the literature. In this case report, we present a 30-year-old male with glenoid osteomyelitis caused by B. henselae, which was treated with arthroscopic irrigation and débridement, as well as antibiotic therapy.

Keywords: Bartonella Henselae, Osteomyelitis, Cat Scratch Disease; CSD; scapula

Case Report

A 30-year-old male with a remote history of a right shoulder SLAP lesion, treated operatively at an outside hospital, presented with a 3-month history of right shoulder pain. Initial shoulder radiographs were performed and appeared to show no abnormality (Figure 1). His pain continued for another month, and he also developed painful lymphadenopathy. At that point, a non-contrast MRI was obtained (Figure 2). This showed a destructive lesion in the scapular neck with communication through the articular surface of the glenoid. There was concern for a malignant process and a PET scan and repeat contrast-enhanced MRI were obtained (Figures 3, 4). This showed increased uptake in several lymph nodes. An inguinal lymph node biopsy was performed, tissue was sent for histology, and a referral was made to the orthopedic oncology service due to concern for skeletal malignancy. Our orthopedic oncologists did not feel the imaging was consistent with a metastatic process or a primary bone tumor. Due to the patient’s history of previous labral pathology, it was felt to be more consistent with a para-labral cyst or post-surgical changes, and a referral was made to the sports medicine service. Around this time, the initial biopsy histology revealed granulomatous inflammation. B. henselae titers were drawn
and found to be significantly elevated, at 1:1280 on 7/15/21. On the same day that the titers came back positive, he was started on oral Rifampin and Azithromycin for 4 weeks, until he was taken to the operating room. He remained on these antibiotics for 4 more weeks after surgery, for a total of 8 weeks. Given the combination of lymphadenopathy, elevated B. henselae titers, and abnormal appearance of the glenoid lesion on MRI, this was felt to be a case of B. henselae osteomyelitis. A CT scan was then ordered for preoperative planning and the decision was made to perform an arthroscopic irrigation and débridement of the glenoid lesion with possible bone grafting (Figure 5).

The patient was taken to the operating room and placed in the lateral position with traction on the arm. After sterile prep, the arthroscope was inserted through a posterior portal and cloudy fluid was noted (Figure 6). This was sent for laboratory analysis but did not return positive for bartonella titers. Once the camera was inserted, the joint was noted to have extensive synovitis and fibrinous material was noted throughout the joint (Figure 7). An anterior portal was established, and the capsule was elevated off the anterior glenoid neck, leaving the previous labral repair intact. A curved microfracture awl was used to probe into the cystic area, and purulent material was noted coming from the area of the cyst. This was also collected and sent for laboratory analysis. A drill and curette were then used to débride the cyst (Figure 8). This material was collected and sent for Warthin-Starry stain, bacterial/fungal culture, and Bartonella PCR testing. Bartonella PCR testing from surgical sample (8/24/21) was sent out for testing but the test was inconclusive due to the presence of competing inhibitors to the polymerase chain reaction in this specimen. Stains were negative.

He was then seen in clinic postop day 1 and was having no issues. He was given a prescription to begin physical therapy for gentle range of motion. At his second postop appointment, 2 weeks later, he noted improving pain and motion. He was continued on oral antibiotics from the infectious disease team. He
was seen again at 6 weeks and reported 75% improvement in his symptoms. He did note some persistent pain, and a repeat MRI was ordered to look for recurrence of the lesion. The MRI showed a decrease in the size of the cyst and reduction of surrounding inflammation. He was seen once again at 3 months and reported near complete resolution of his symptoms. By this time, the patient had finished his course of antibiotics and CRP/ESR had normalized. At final follow-up, roughly 6 months later he had no complaints and was back to doing all his previous activities without any discomfort.

Discussion

Bartonella henselae is a gram-negative bacteria responsible for CSD. An estimated 12,000-22,000 cases per year are diagnosed in the United States, with over 50% of cases involving children under 18 years of age [3, 10]. As the name would imply, the main carrier of B. henselae are feral and domesticated cats. The bacteria is transmitted between cats via fleas and ticks [8]. Infection in humans typically occurs through cat bites, scratches, or saliva coming in contact with open wounds. Contact with cats, most often kittens, is reported in 99% of cases, and a site of inoculation is reported 92% of the time [1]. On chart review there was no prior history of exposure to cats, the well-recognized host. Yet, approximately 5 months prior to his presentation with shoulder pain, the patient sustained open fractures to his 2-5th toes from a horse stepping on his bare foot. Though not the typical host, horses have been shown to be asymptomatic carriers of bartonella henselae and this could have seeded an infection [4]. The most common symptoms include fever, lymphadenopathy, and a pustule at the site of a scratch[5]. In 80-90% of cases CSD is self-limiting and resolves without treatment in 2-4 weeks however, in rare cases disseminated disease occurs and may warrant treatment with antibiotics or surgical intervention[5].
Diagnosis of CSD remains difficult. Culture of the organism is unreliable and may take up to 40 days to show growth [12]. Therefore, if taking cultures, holding them for up to 6 weeks is recommended. Alternatively, if a lymph node or other tissue is removed, it can be examined histologically using a Warthin-Starry silver impregnated stain[11]. In this case, the intra-operative cultures did not grow B. henselae. The patient had been on antibiotics for several weeks before operative intervention, and even in the most ideal situations, the organism is difficult to culture. However, the most effective and widely used way to diagnose CSD is with serologic testing for antibodies against B. henselae using enzyme immunoassay (EIA) or indirect fluorescence method (IFA)[6]. This patient did have positive titers, as well as the classic lymphadenopathy associated with CSD.

Although uncomplicated CSD does not require any treatment other than supportive measures, Azithromycin has been shown in a prospective double-blinded trial to hasten the resolution of lymphadenopathy, without significant long-term differences between placebo. Significantly less data exists on the best treatment for disseminated disease, however rifampin, ciprofloxacin, trimethoprim-sulfamethoxazole, and gentamicin are all effective in treating disseminated disease[8].

B. henselae osteomyelitis has been reported in the literature, although it is exceedingly rare. One series of 1200 patients reported just 2 (0.17%) with osteolytic lesions[1]. Another series of 1852 patients reported just 5 (0.27%) with osseous involvement[7]. The vertebral column and pelvic girdle make up nearly 70% of reported osseous lesions[2]. To our knowledge, there has never been a case report of B. henselae osteomyelitis in the scapula. Although B. henselae associated osteomyelitis can resolve with time and antibiotics, there are a few reports of operatively treated B. henselae osteomyelitis[14][13]. These were most often in the spine, and due to concern for cord compression from an associated abscess. We elected to operatively treat this patient with arthroscopic irrigation and débridement due to the concern for continued articular cartilage damage from the osseous lesion, which had already begun to penetrate through the glenoid into the shoulder joint. We were concerned that antibiotic
treatment would not work quickly enough and being a young, active male, we did not want the patient’s articular cartilage to be damaged.

Conclusion:

B. henselae osteomyelitis is a rare presentation of an otherwise self-limiting disease. It should be included in the differential diagnosis of a patient with tender lymphadenopathy and history of close exposure with cats. Biopsy of the inflamed lymph nodes may show granulomatous inflammation, and the diagnosis can be confirmed with serological testing. Uncomplicated cases can be treated with supportive measures, whereas disseminated cases may need antibiotics or operative treatment for resolution of symptoms. In this case report, we present the only known case of B. henselae scapular osteomyelitis. More research needs to be performed to determine the best treatment options for osseous involvement of B. henselae osteomyelitis.

References:


Figure 1: Initial X-ray 3/17/21
Figure 2: 4/22/21 Non-contrast MRI showing lytic lesion in the glenoid neck
Figure 3: 7/8/21 Pre-contrast MRI
Figure 4: 7/8/21 Contrast-Enhanced MRI
Figure 5: 8/16/21 Pre-surgical CT showing glenoid articular involvement
Figure 6: Murky fluid and fibrinous material encountered upon entry of the arthroscope
Figure 7: Fibrinous material seen at the entrance of the intra-osseous abscess
Figure 8: Decompressed intraosseous abscess after usage of microfracture awl and drill
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: